Introduction of Monochloramine into a Municipal Water System: Impact on Colonization of Buildings by Legionella spp

Author:

Moore Matthew R.1,Pryor Marsha2,Fields Barry1,Lucas Claressa1,Phelan Maureen3,Besser Richard E.1

Affiliation:

1. Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia

2. Pinellas County Utilities Laboratory, Largo, Florida

3. Biostatistics and Information Management Branch, Centers for Disease Control and Prevention, Atlanta, Georgia

Abstract

ABSTRACT Legionnaires' disease (LD) outbreaks are often traced to colonized potable water systems. We collected water samples from potable water systems of 96 buildings in Pinellas County, Florida, between January and April 2002, during a time when chlorine was the primary residual disinfectant, and from the same buildings between June and September 2002, immediately after monochloramine was introduced into the municipal water system. Samples were cultured for legionellae and amoebae using standard methods. We determined predictors of Legionella colonization of individual buildings and of individual sampling sites. During the chlorine phase, 19 (19.8%) buildings were colonized with legionellae in at least one sampling site. During the monochloramine phase, six (6.2%) buildings were colonized. In the chlorine phase, predictors of Legionella colonization included water source (source B compared to all others, adjusted odds ratio [aOR], 6.7; 95% confidence interval [CI], 2.0 to 23) and the presence of a system with continuously circulating hot water (aOR, 9.8; 95% CI, 1.9 to 51). In the monochloramine phase, there were no predictors of individual building colonization, although we observed a trend toward greater effectiveness of monochloramine in hotels and single-family homes than in county government buildings. The presence of amoebae predicted Legionella colonization at individual sampling sites in both phases (OR ranged from 15 to 46, depending on the phase and sampling site). The routine introduction of monochloramine into a municipal drinking water system appears to have reduced colonization by Legionella spp. in buildings served by the system. Monochloramine may hold promise as community-wide intervention for the prevention of LD.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference19 articles.

1. Risk factors for contamination of domestic hot water systems by legionellae

2. American Society of Heating Refrigerating and Air-Conditioning Engineers Inc. 2000. Minimizing the risk of legionellosis associated with building water systems 12-2000. ASHRAE Standard Project Committee 12-2000. American Society of Heating Refrigerating and Air-Conditioning Engineers Inc. Atlanta Ga.

3. Bartlett, J. G. 2004. Decline in microbial studies for patients with pulmonary infections. Clin. Infect. Dis.39:170-172.

4. Benin, A. L., R. F. Benson, and R. E. Besser. 2002. Trends in Legionnaires disease, 1980-1998: declining mortality and new patterns of diagnosis. Clin. Infect. Dis.35:1039-1046.

5. Breiman, R. 1993. Modes of transmission in epidemic and nonepidemic Legionella infection: directions for further study, p. 30-35. In J. Barbaree, R. Breiman, and A. Dufour (ed.), Legionella: current status and emerging perspectives. American Society for Microbiology, Washington, D.C.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3