Purification and characterization of the conidial laccase of Aspergillus nidulans

Author:

Kurtz M B,Champe S P

Abstract

Conidial laccase of Aspergillus nidulans was purified by standard protein purification methods. Although the purified material showed a cluster of several protein bands on a nondenaturing gel, each of these protein bands had laccase activity. All bands of activity, however, were absent in a strain carrying a mutation in the structural gene for laccase. Concentrated solutions (greater than 1 mg/ml) were bright blue, suggesting that, like other laccases, this enzyme contains copper. The enzyme contained asparagine-linked carbohydrate (12% by weight) which could be removed by digestion with endo-beta-N-acetylglucosaminidase H. The molecular weight of native enzyme as determined by gel filtration was 110,000, but the largest component in a sodium dodecyl sulfate gel was 80,000. Several smaller components (55,000 and 36,000 molecular weight) were also visible. We present evidence which suggests that the smaller components are in vivo cleavage products tightly associated with enzymatically active molecules. Comparison of the laccase from a white-spore (wA) and a green-spore (wA+) strain showed, surprisingly, that the enzymes differed in electrophoretic pattern, in vitro heat stability, and in vivo metabolic stability. The difference was manifested for enzymes isolated from cultures after conidial pigmentation of the wA+ strain had occurred. If examined earlier, before pigmentation, the enzymes were indistinguishable. Since wA strains lack the precursor of the wild-type green pigment, i.e., the laccase substrate, we suggest that the transformation of the enzyme of the wA strain is due to its failure to interact with its normal substrate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference22 articles.

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3