Analysis of feedback-resistant anthranilate synthases from Saccharomyces cerevisiae

Author:

Graf R1,Mehmann B1,Braus G H1

Affiliation:

1. Institute of Microbiology, Swiss Federal Institute of Technology, Zurich.

Abstract

The initial step of tryptophan biosynthesis is catalyzed by the enzyme anthranilate synthase, which in most microorganisms is subject to feedback inhibition by the end product of the pathway. We have characterized the TRP2 gene from a mutant Saccharomyces cerevisiae strain coding for an anthranilate synthase that is unresponsive to tryptophan. Sequence analysis of this TRP2(Fbr) (feedback-resistant) allele revealed numerous differences from a previously published TRP2 sequence. However, TRP2(Fbr) was found to differ in only one single-point mutation from its own parent wild type, a C-to-T transition resulting in a serine 76-to-leucine 76 amino acid substitution. Therefore, serine 76 is a crucial amino acid for proper regulation of the yeast enzyme. We constructed additional feedback-resistant enzyme forms of the yeast anthranilate synthase by site-directed mutagenesis of the conserved LLES sequence in the TRP2 gene. From analysis of these variants, we propose an extended sequence, LLESX10S, as the regulatory element in tryptophan-responsive anthranilate synthases from prokaryotic and eukaryotic organisms.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3