Genetic Diversity among Food-Borne and Waterborne Norovirus Strains Causing Outbreaks in Sweden

Author:

Lysén Maria1,Thorhagen Margareta2,Brytting Maria1,Hjertqvist Marika3,Andersson Yvonne3,Hedlund Kjell-Olof2

Affiliation:

1. Department of Virology

2. Centre for Microbiological Preparedness

3. Department of Epidemiology, Swedish Institute for Infectious Disease Control, Solna SE-171 82, Sweden

Abstract

ABSTRACT A total of 101 food-borne and waterborne outbreaks that were caused by norovirus and that resulted in more than 4,100 cases of illness were reported to the Swedish Institute for Infectious Disease Control from January 2002 to December 2006. Sequence and epidemiological data for isolates from 73 outbreaks were analyzed. In contrast to health care-related outbreaks, no clear seasonality could be observed. Sequence analysis showed a high degree of genetic variation among the noroviruses detected. Genogroup II (GII) viruses were detected in 70% of the outbreaks, and of those strains, strains of GII.4 were the most prevalent and were detected in 25% of all outbreaks. The GII.4 variants detected in global outbreaks in health care settings during 2002, 2004, and 2006 were also found in the food-borne outbreaks. GI strains totally dominated as the cause of water-related (drinking and recreational water) outbreaks and were found in 12 of 13 outbreaks. In 14 outbreaks, there were discrepancies among the polymerase and capsid genotype results. In four outbreaks, the polymerase of the recombinant GII.b virus occurred together with the GII.1 or GII.3 capsids, while the GII.7 polymerase occurred together with the GII.6 and GII.7 capsids. Mixed infections were observed in six outbreaks; four of these were due to contaminated water, and two were due to imported frozen berries. Contaminated food and water serve as important reservoirs for noroviruses. The high degree of genetic diversity found among norovirus strains causing food-borne and waterborne infections stresses the importance of the use of broad reaction detection methods when such outbreaks are investigated.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3