Affiliation:
1. National Research Council, Prairie Regional Laboratory, Saskatoon, Saskatchewan, S7N OW9 Canada
Abstract
The variations in the levels of adenine nucleotides during the phased growth (cell cycle) of the yeast
Candida utilis
growing under nitrogen, sulfate, or iron limitation with glycerol as carbon source have been determined. Synchronous cultures were obtained by the continuous phasing technique, and the results were compared with those of chemostat cultures growing at similar growth rates and under the same types of nutrient limitation. Whereas the chemostat experiments indicated only the average energy status of cultures growing at random, results from phased cultures showed that the adenylate energy charge, defined as (ATP + ½ADP)/(ATP + ADP + AMP) (where ATP, ADP, and AMP signify adenosine 5′-triphosphate, -diphosphate, and -monophosphate, respectively), varied during the phased growth of the yeast. These variations were related to the stage of development of the cells and to the type of nutrient limitation. In every case the energy charge dropped to a low value during the first half of the phasing cycle (cell cycle). Whereas the energy charge was maintained at relatively high levels (ranging from 0.78 to 0.94), for sulfate- or nitrogen-limited cultures, it was very low when iron was the growth-limiting nutrient (0.44 to 0.78). In spite of the low energy charge, the yeast continued to grow under iron limitation. The main component of the adenylate pool of the iron-limited culture was ADP and not ATP as observed with other types of nutrient limitation. It is concluded that under iron limitation the growth of the organism is limited by energy and that under energy-limited growth the energy charge of a growing organism is maintained at low levels. The reason for maintaining a low energy charge in an energy-limited culture is discussed.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献