Abstract
One heat-modifiable protein of Escherichia coli outer membrane does not completely change to the high-temperature form in the presence of magnesium ion in sodium dodecyl sulfate solution. When the metal ion complexing reagents ethylenediaminetetraacetic acid, phosphate ion, hydroxyl ion, or the competitive cations Zn2+ or Ca2+ are added to the sodium dodecyl sulfate-solubilized sample of outer membrane, and then the sample is heated to 100 degrees C and recooled to room temperature, the protein is almost completely converted to the high-temperature form. In control samples, or if sodium chloride, magnesium chloride, or manganous chloride are added to these samples and treated the same way, a large amount of the low-temperature form of the protein is preserved. beta-Mercaptoethanol additions gave the same results as the metal ion complexing reagents and may owe its activity in these solutions to metal-binding activity and not to its role as a reducing reagent. We concluded that magnesium ion may be involved with stabilization of the low-temperature form of the protein either by directly binding the magnesium or by mediating interaction with other components of the membrane.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献