Impact of Relative Humidity and Collection Media on Mycobacteriophage D29 Aerosol

Author:

Liu Keyang1,Wen Zhanbo1,Li Na1,Yang Wenhui1,Wang Jie1,Hu Lingfei1,Dong Xiaokai1,Lu Jianchun1,Li Jinsong1

Affiliation:

1. State Research Center for Bioprotective Equipment and Engineering Technology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China

Abstract

ABSTRACT This study was conducted to evaluate the effect of aerosol generation, methods of sampling, storage conditions, and relative humidity on the culturability of the mycobacteriophage D29. The lytic phage D29 can kill Mycobacterium tuberculosis , and the phage aerosol can be treated as a potential tool for tuberculosis treatment. The culturability of D29 was tested using a test chamber designed for the bioaerosols research against three spray liquids (deionized water, phosphate-buffered saline [PBS], and normal saline), four collection media (suspension medium [SM], nutrient broth, PBS, and deionized water), two sampling systems (the all-glass impinger AGI-30 and the Biosampler) and across a range of humidities (20 to 90%). The effect of storage conditions on the culturability of collected sample was also evaluated for the AGI-30 impinger. The results proved that viable phage D29 particles generated by deionized water were approximately 30- and 300-fold higher than PBS and normal saline, respectively. As collection media, SM buffer and nutrient broth were observed to yield a higher number of plaques compared to PBS and deionized water. No difference was observed in collection efficiency between AGI-30 and Biosampler with two detection methods (culture-based technique and real-time PCR). The culturability of collected D29 in SM buffer or nutrient broth can be maintained up to 12 h irrespective of storage temperature. Relative humidity was found to strongly influence airborne D29 culturability which is 2- to 20-fold higher in low humidity (25%) than medium (55%) or high (85%) humidity. This research will help identify the optimal means for the application of D29 aerosol in animal inhalation experiments.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3