Timing of molecular events in meiosis in Saccharomyces cerevisiae: stable heteroduplex DNA is formed late in meiotic prophase

Author:

Goyon C1,Lichten M1

Affiliation:

1. Laboratory of Biochemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

Abstract

To better understand the means by which chromosomes pair and recombine during meiosis, we have determined the time of appearance of heteroduplex DNA relative to the times of appearance of double-strand DNA breaks and of mature recombined molecules. Site-specific double-strand breaks appeared early in meiosis and were formed and repaired with a timing consistent with a role for breaks as initiators of recombination. Heteroduplex-containing molecules appeared about 1 h after double-strand breaks and were followed shortly by crossover products and the first meiotic nuclear division. We conclude that parental chromosomes are stably joined in heteroduplex-containing structures late in meiotic prophase and that these structures are rapidly resolved to yield mature crossover products. If the chromosome pairing and synapsis observed earlier in meiotic prophase is mediated by formation of biparental DNA structures, these structures most likely either contain regions of non-Watson-Crick base pairs or contain regions of heteroduplex DNA that either are very short or dissociate during DNA purification. Two loci were examined in this study: the normal ARG4 locus, and an artificial locus consisting of an arg4-containing plasmid inserted at MAT. Remarkably, sequences in the ARG4 promoter that suffered double-strand cleavage at the normal ARG4 locus were not cut at significant levels when present at MAT::arg4. These results indicate that the formation of double-strand breaks during meiosis does not simply involve the specific recognition and cleavage of a short nucleotide sequence.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3