Transformation by Fos proteins requires a C-terminal transactivation domain.

Author:

Wisdon R,Verma I M

Abstract

The Fos family of proteins now includes seven members: the retroviral proteins FBR-v-Fos and FBJ-v-Fos and the cellular proteins c-Fos, FosB, FosB2, Fra1, and Fra2. Four proteins (FBR-v-Fos, FBJ-v-Fos, c-Fos, and FosB) transform established rodent fibroblast cell lines, while three (FosB2, Fra1, and Fra2) do not. As all family members display sequence-specific DNA-binding activity as part of a heterodimeric complex with Jun proteins, other features must account for the differences in transforming potential. We demonstrate here that all transforming members have a C-terminal transactivation domain that is lacking in nontransforming members. The nontransforming proteins Fra1 and Fra2 can be converted to transforming proteins by fusion of a transactivation domain from either FosB or VP16. We also demonstrate that differences in the basic region-leucine zipper domain affecting either the affinity or sequence specificity of DNA binding are not determinants of the difference in transforming potential among members of the Fos family. The results further define the functional requirements for transformation by Fos proteins and suggest that the subunit composition of AP1 complexes is an important determinant of mitogenic signalling capability.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3