Correlation between Serological and Sequencing Analyses of the PorB Outer Membrane Protein in the Neisseria meningitidis Serotyping System

Author:

Sacchi Claudio T.1,Lemos Ana P. S.1,Whitney Anne M.2,Solari Claude A.3,Brandt Mary E.2,Melles Carmo E. A.1,Frasch Carl E.4,Mayer Leonard W.2

Affiliation:

1. Bacteriology Division, Adolfo Lutz Institute, São Paulo,1 and

2. Division of Bacterial and Mycotic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia2; and

3. Bacteriology Department, Fundação Oswaldo Cruz, Rio de Janeiro,3 Brazil;

4. Center for Biologics Evaluation and Research, Bethesda, Maryland4

Abstract

ABSTRACT The current serological typing scheme for Neisseria meningitidis is not comprehensive; a proportion of isolates are not serotypeable. DNA sequence analysis and predicted amino acid sequences were used to characterize the structures of variable-region (VR) epitopes on N. meningitidis PorB proteins (PorB VR typing). Twenty-six porB gene sequences were obtained from GenBank and aligned with 41 new sequences. Primary amino acid structures predicted from those genes were grouped into 30 VR families of related variants that displayed at least 60% similarity. We correlated VR families with monoclonal antibody (MAb) reactivities, establishing a relationship between VR families and epitope locations for 15 serotype-defining MAbs. The current panel of serotype-defining MAbs underestimates by at least 50% the PorB VR variability because reagents for several major VR families are lacking or because a number of VR variants within some families are not recognized by serotype-defining MAbs. These difficulties, also reported for serosubtyping based on the PorA protein, are shown as inconsistent results between serological and sequence analyses, leading to inaccurate strain identification and incomplete epidemiological data. The information from this study enabled the expansion of the panel of MAbs currently available for serotyping, by including MAbs of previously undetermined specificities. Use of the expanded serotype panel enabled us to improve the sensitivity of serotyping by resolving a number of formerly nonserotypeable strains. In most cases, this information can be used to predict the VR family placement of unknown PorB proteins without sequencing the entire porB gene. PorB VR typing complements serotyping, and a combination of both techniques may be used for full characterization of meningococcal strains. The present work represents the most complete and integrated data set of PorB VR sequences and MAb reactivities of serogroup B and C meningococci produced to date.

Publisher

American Society for Microbiology

Subject

Microbiology (medical),Clinical Biochemistry,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3