Early Innate Recognition of Herpes Simplex Virus in Human Primary Macrophages Is Mediated via the MDA5/MAVS-Dependent and MDA5/MAVS/RNA Polymerase III-Independent Pathways

Author:

Melchjorsen Jesper1,Rintahaka Johanna2,Søby Stine1,Horan Kristy A.3,Poltajainen Alina2,Østergaard Lars1,Paludan Søren R.3,Matikainen Sampsa2

Affiliation:

1. Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark

2. Finnish Institute of Occupational Health, Helsinki, Finland

3. Department of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark

Abstract

ABSTRACT Innate recognition of viruses is mediated by pattern recognition receptors (PRRs) triggering expression of antiviral interferons (IFNs) and proinflammatory cytokines. In mice, Toll-like receptor 2 (TLR2) and TLR9 as well as intracellular nucleotide-sensing pathways have been shown to recognize herpes simplex virus (HSV). Here, we describe how human primary macrophages recognize early HSV infection via intracellular pathways. A number of inflammatory cytokines, IFNs, and IFN-stimulated genes were upregulated after HSV infection. We show that early recognition of HSV and induction of IFNs and inflammatory cytokines are independent of TLR2 and TLR9, since inhibition of TLR2 using TLR2 neutralizing antibodies did not affect virus-induced responses and the macrophages were unresponsive to TLR9 stimulation. Instead, HSV recognition involves intracellular recognition systems, since induction of tumor necrosis factor alpha (TNF-α) and IFNs was dependent on virus entry and replication. Importantly, expression of IFNs was strongly inhibited by small interfering RNA (siRNA) knockdown of MAVS, but this MAVS-dependent IFN induction occurred independently of the recently discovered polymerase III (Pol III)/RIG-I DNA sensing system. In contrast, induction of TNF-α was largely independent of MAVS, suggesting that induction of inflammatory cytokines during HSV infection proceeds via a novel pathway. Transfection with ODN2006, a broad inhibitor of intracellular nucleotide recognition, revealed that nucleotide-sensing systems are employed to induce both IFNs and TNF-α. Finally, using siRNA knockdown, we found that MDA5, but not RIG-I, was the primary mediator of HSV recognition. Thus, innate recognition of HSV by human primary macrophages occurs via two distinct intracellular nucleotide-sensing pathways responsible for induction of IFNs and inflammatory cytokine expression, respectively.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3