Affiliation:
1. Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
Abstract
ABSTRACT
Bromodomain protein 4 (Brd4) has been identified as the cellular binding target through which the E2 protein of bovine papillomavirus type 1 links the viral genome to mitotic chromosomes. This tethering ensures retention and efficient partitioning of genomes to daughter cells following cell division. E2 is also a regulator of viral gene expression and a replication factor, in association with the viral E1 protein. In this study, we show that E2 proteins from a wide range of papillomaviruses interact with Brd4, albeit with variations in efficiency. Moreover, disruption of the E2-Brd4 interaction abrogates the transactivation function of E2, indicating that Brd4 is required for E2-mediated transactivation of all papillomaviruses. However, the interaction of E2 and Brd4 is not required for genome partitioning of all papillomaviruses since a number of papillomavirus E2 proteins associate with mitotic chromosomes independently of Brd4 binding. Furthermore, mutations in E2 that disrupt the interaction with Brd4 do not affect the ability of these E2s to associate with chromosomes. Thus, while all papillomaviruses attach their genomes to cellular chromosomes to facilitate genome segregation, they target different cellular binding partners. In summary, the E2 proteins from many papillomaviruses, including the clinically important alpha genus human papillomaviruses, interact with Brd4 to mediate transcriptional activation function but not all depend on this interaction to efficiently associate with mitotic chromosomes.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology