A bifunctional protein from Pseudomonas denitrificans carries cobinamide kinase and cobinamide phosphate guanylyltransferase activities

Author:

Blanche F1,Debussche L1,Famechon A1,Thibaut D1,Cameron B1,Crouzet J1

Affiliation:

1. Département Analyse, Institut des Biotechnologies, Vitry-sur-Seine, France.

Abstract

The two consecutive activities of the cobalamin biosynthetic pathway that catalyze the conversion of cobinamide to cobinamide phosphate (cobinamide kinase) and of cobinamide phosphate to GDP-cobinamide (cobinamide phosphate guanylytransferase) were shown to be carried by the same protein in Pseudomonas denitrificans. This bifunctional protein was purified to homogeneity by high-performance liquid chromatography of extracts of a recombinant strain of this microorganism, and the sequence of the first 10 amino acid residues at the N terminus was determined. Both activities were specific to the coenzyme forms of the corrinoid substrates and exhibited an optimum pH at 8.8. Both ATP and GTP were shown to be in vitro gamma-phosphate donors for cobinamide kinase. However, competition experiments demonstrated that ATP was the preferred substrate, a result that can be explained in terms of the kinetic properties of the enzyme. Labeling experiments established that the phosphate group of cobinamide phosphate is quantitatively retained as the inner phosphate of GDP-cobinamide during the guanylyltransferase reaction. The native protein had an apparent molecular weight of 40,000, as estimated by gel filtration, and consisted of two identical subunits of Mr 20,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein had an isoelectric point of 5.35 and contained a high-affinity GTP-binding site (Kaff.(GTP) = 0.22 microM). Binding of GTP onto this site resulted in a marked increase of the affinity of cobinamide kinase for cobinamide. This property and other kinetic properties may regulate the enzyme and prevent the accumulation of cobinamide phosphate.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3