Detection of alternative nitrogenases in aerobic gram-negative nitrogen-fixing bacteria

Author:

Fallik E1,Chan Y K1,Robson R L1

Affiliation:

1. Department of Biochemistry, University of Georgia, Athens 30602.

Abstract

Strains of aerobic, microaerobic, nonsymbiotic, and symbiotic dinitrogen-fixing bacteria were screened for the presence of alternative nitrogenase (N2ase) genes by DNA hybridization between genomic DNA and DNA encoding structural genes for components 1 of three different enzymes. A nifDK gene probe was used as a control to test for the presence of the commonly occurring Mo-Fe N2ase, a vnfDGK gene probe was used to show the presence of V-Fe N2ase, and an anfDGK probe was used to detect Fe N2ase. Hitherto, all three enzymes have been identified in Azotobacter vinelandii OP, and all but the Fe N2ase are present in Azotobacter chroococcum ATCC 4412 (MCD1). Mo-Fe N2ase and V-Fe N2ase structural genes only were confirmed in this strain and in two other strains of A. chroococcum (ATCC 480 and ATCC 9043). A similar pattern was observed with Azotobacter beijerinckii ATCC 19360 and Azotobacter nigricans ATCC 35009. Genes for all three systems are apparently present in two strains of Azotobacter paspali (ATCC 23367 and ATCC 23833) and also in Azomonas agilis ATCC 7494. There was no good evidence for the existence of any genes other than Mo-Fe N2ase structural genes in several Rhizobium meliloti strains, cowpea Rhizobium strain 32H1, or Bradyrhizobium japonicum. Nitrogenase and nitrogenase genes in Azorhizobium caulinodans behaved in an intermediate fashion, showing (i) the formation of ethane from acetylene under Mo starvation, a characteristic of alternative nitrogenases, and (ii) a surprising degree of cross-hybridization to the vnfDGK, but not the anfDGK, probe. vnfDGK- and anfDGK-like sequences were not detected in two saccharolytic Pseudomonas species or Azospirillum brasilense Sp7. The occurrence of alternative N2ases seems restricted to members of the family Azotobacteraceae among the aerobic and microaerobic diazotrophs tested, suggesting that an ability to cope with O2 when fixing N2 may be an important factor influencing the distribution of alternative nitrogenases.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molybdenum Role in Nitrogen Bioavailability of Wheat-Soil System Using the Natural 15N Abundance Technique;Journal of Soil Science and Plant Nutrition;2022-07-20

2. Biological nitrogen fixation by alternative nitrogenases in terrestrial ecosystems: a review;Biogeochemistry;2020-04-30

3. Alternative enzymes as a special strategy for the adaptation of procaryotic organisms (Review);Applied Biochemistry and Microbiology;2017-09

4. Azotobacter;Bergey's Manual of Systematics of Archaea and Bacteria;2015-09-14

5. Azomonas;Bergey's Manual of Systematics of Archaea and Bacteria;2015-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3