Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs

Author:

Dazzo F B1,Truchet G L1,Hollingsworth R I1,Hrabak E M1,Pankratz H S1,Philip-Hollingsworth S1,Salzwedel J L1,Chapman K1,Appenzeller L1,Squartini A1

Affiliation:

1. Department of Microbiology, Michigan State University, East Lansing 48824.

Abstract

The interaction between Rhizobium lipopolysaccharide (LPS) and white clover roots was examined. The Limulus lysate assay indicated that Rhizobium leguminosarum bv. trifolii (hereafter called R. trifolii) released LPS into the external root environment of slide cultures. Immunofluorescence and immunoelectron microscopy showed that purified LPS from R. trifolii 0403 bound rapidly to root hair tips and infiltrated across the root hair wall. Infection thread formation in root hairs was promoted by preinoculation treatment of roots with R. trifolii LPS at a low dose (up to 5 micrograms per plant) but inhibited at a higher dose. This biological activity of LPS was restricted to the region of the root present at the time of exposure to LPS, higher with LPS from cells in the early stationary phase than in the mid-exponential phase, incubation time dependent, incapable of reversing inhibition of infection by NO3- or NH4+, and conserved among serologically distinct LPSs from several wild-type R. trifolii strains (0403, 2S-2, and ANU843). In contrast, infections were not increased by preinoculation treatment of roots with LPSs from R. leguminosarum bv. viciae strain 300, R. meliloti 102F28, or members of the family Enterobacteriaceae. Most infection threads developed successfully in root hairs pretreated with R. trifolii LPS, whereas many infections aborted near their origins and accumulated brown deposits if pretreated with LPS from R. meliloti 102F28. LPS from R. leguminosarum 300 also caused most infection threads to abort. Other specific responses of root hairs to infection-stimulating LPS from R. trifolii included acceleration of cytoplasmic streaming and production of novel proteins. Combined gas chromatography-mass spectroscopy and proton nuclear magnetic resonance analyses indicated that biologically active LPS from R. trifolii 0403 in the early stationary phase had less fucose but more 2-O-methylfucose, quinovosamine, 3,6-dideoxy-3-(methylamino)galactose, and noncarbohydrate substituents (O-methyl, N-methyl, and acetyl groups) on glycosyl components than did inactive LPS in the mid-exponential phase. We conclude that LPS-root hair interactions trigger metabolic events that have a significant impact on successful development of infection threads in this Rhizobium-legume symbiosis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3