Affiliation:
1. Infectious Disease/Molecular Biology Research Section, American Cyanamid, Lederle Laboratories, Pearl River, New York 10965.
Abstract
Tetracycline analogs fell into two classes on the basis of their mode of action. Tetracycline, chlortetracycline, minocycline, doxycycline, and 6-demethyl-6-deoxytetracycline inhibited cell-free translation directed by either Escherichia coli or Bacillus subtilis extracts. A second class of analogs tested, including chelocardin, anhydrotetracycline, 6-thiatetracycline, anhydrochlortetracycline, and 4-epi-anhydrochlortetracycline, failed to inhibit protein synthesis in vitro or were very poor inhibitors. Tetracyclines of the second class, however, rapidly inhibited the in vivo incorporation of precursors into DNA and RNA as well as protein. The class 2 compounds therefore have a mode of action that is entirely distinct from the class 1 compounds, such as tetracycline that are used clinically. Although tetracyclines of the second class entered the cytoplasm, the ability of these analogs to inhibit macromolecular synthesis suggests that the cytoplasmic membrane is their primary site of action. The interaction of class 1 and class 2 tetracyclines with ribosomes was studied by examining their effects on the chemical reactivity of bases in 16S rRNA to dimethyl sulfate. Class 1 analogs affected the reactivity of bases to dimethyl sulfate. The response with class 2 tetracyclines varied, with some analogs affecting reactivity and others (chelocardin and 4-epi-anhydrotetracycline) not.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献