Regulation of the Marinomonas mediterranea Antimicrobial Protein Lysine Oxidase by l -Lysine and the Sensor Histidine Kinase PpoS

Author:

Molina-Quintero Luisa R.1,Lucas-Elío Patricia1,Sanchez-Amat Antonio1

Affiliation:

1. Department of Genetics and Microbiology, University of Murcia, 30100 Murcia, Spain

Abstract

ABSTRACT Some Gram-negative bacteria express a novel enzyme with lysine-ε-oxidase (LOD) activity (EC 1.4.3.20). The oxidation of l -Lys generates, among other products, hydrogen peroxide, which confers antimicrobial properties to this kind of enzyme and has been shown to be involved in cell death during biofilm development and differentiation. In addition to LOD, the melanogenic marine bacterium Marinomonas mediterranea , which forms part of the microbiota of the marine plant Posidonia oceanica , expresses two other oxidases of biotechnological interest, a multicopper oxidase, PpoA, with laccase activity and a tyrosinase named PpoB, which is responsible for melanin synthesis. By using both lacZ fusions with the lodAB promoter and quantitative reverse transcription-PCR (qRT-PCR), this study shows that the hybrid sensor histidine kinase PpoS regulates LOD activity at the transcriptional level. Although PpoS also regulates PpoA and PpoB, in this case, the regulatory effect cannot be attributed only to a transcriptional regulation. Further studies indicate that LOD activity is induced at the posttranscriptional level by l -Lys as well as by two structurally similar compounds, l -Arg and meso-2,6-diaminopimelic acid (DAP), neither of which is a substrate of the enzyme. The inducing effect of these compounds is specific for LOD activity since PpoA and PpoB are not affected by them. This study offers, for the first time, insights into the mechanisms regulating the synthesis of the antimicrobial protein lysine-ε-oxidase in M. mediterranea , which could be important in the microbial colonization of the seagrass P. oceanica .

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3