Affiliation:
1. HIV and AIDS Malignancy Branch, Center for Cancer Research, NCI
2. Flow Cytometry Core Facility, NHLBI, NIH, Bethesda, Maryland 20892
Abstract
ABSTRACT
High-risk human papillomaviruses (HPVs) encode two viral oncoproteins, E6 and E7, from a single bicistronic pre-mRNA containing three exons and two introns. Retention of intron 1 in the E6 coding region is essential for production of the full-length E6 oncoprotein. However, splicing of intron 1 is extremely efficient in cervical cancer cells, leading to the production of a spliced transcript, E6*I, of E6. Here, we investigated whether this splicing of intron 1 might benefit E7 production. Using RNA interference as a tool, we targeted the intron 1 region using small interfering RNAs (siRNAs) in HPV-positive cell lines. At an effective low dose, the siRNAs specifically suppressed E6 expression but not E7 expression, as demonstrated by the stabilization of p53. However, at high doses the HPV18 intron 1-specific siRNA substantially and specifically reduced the level of the 18E6*I mRNA lacking the intron region in HeLa cells, implying its nuclear silencing on the pre-mRNA before RNA splicing. Two other siRNAs targeting the exon 2 regions of HPV16 and -18, which encode the E7 oncoprotein, reduced the E6*I mRNAs to a remarkable extent and preferentially suppressed expression of E7, leading to accumulation of hypophosphorylated p105
Rb
and cell cycle arrest, indicating that the majority of E7 proteins are the translational products of E6*I mRNAs. This was confirmed by transient transfection in 293 cells: E7 could be translated only from the E7 open reading frame (ORF) on E6*I mRNA in a distance-dependent matter of upstream E6*I ORF by translation reinitiation. The data thus provide direct evidence that the E6*I mRNAs of high-risk HPVs are responsible for E7 production.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference42 articles.
1. Baker, C. C., and C. Calef. 1995. Maps of papillomavirus mRNA transcripts, p. III-3-III-20. In G. Myers, F. Sverdrup, C. Baker, A. McBride, K. Münger, H.-U. Bernard, and J. Meissner (ed.), The human papillomaviruses compendium. Los Alamos National Laboratory, Los Alamos, N. Mex.
2. Berezutskaya, E., and S. Bagchi. 1997. The human papillomavirus E7 oncoprotein functionally interacts with the S4 subunit of the 26 S proteasome. J. Biol. Chem.272:30135-30140.
3. Bohm, S., S. P. Wilczynski, H. Pfister, and T. Iftner. 1993. The predominant mRNA class in HPV16-infected genital neoplasias does not encode the E6 or the E7 protein. Int. J. Cancer55:791-798.
4. Boyer, S. N., D. E. Wazer, and V. Band. 1996. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res.56:4620-4624.
5. Butz, K., T. Ristriani, A. Hengstermann, C. Denk, M. Scheffner, and F. Hoppe-Seyler. 2003. siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene22:5938-5945.
Cited by
185 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献