Strain Composition of the Ehrlichia Anaplasma marginale within Persistently Infected Cattle, a Mammalian Reservoir for Tick Transmission

Author:

Palmer Guy H.1,Rurangirwa Fred R.1,McElwain Terry F.1

Affiliation:

1. Program in Vector-borne Diseases, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164-7040.

Abstract

ABSTRACT Tick-borne ehrlichial pathogens of animals and humans require a mammalian reservoir of infection from which ticks acquire the organism for subsequent transmission. In the present study, we examined the strain structure of Anaplasma marginale , a genogroup II ehrlichial pathogen, in both an acute outbreak and in persistently infected cattle that serve as a reservoir for tick transmission. Using the msp1 α genotype as a stable strain marker, only a single genotype was detected in a disease outbreak in a previously uninfected herd. In contrast, a diverse set of genotypes was detected in a persistently infected reservoir herd within a region where A. marginale is endemic. Genotypic diversity did not appear to be rapidly generated within an individual animal, because only a single genotype, identical to that of the inoculating strain, was detected at time points up to 2 years after experimental infection, and only a single identical genotype was found in repeat sampling of individual naturally infected cattle. Similarly, only a single genotype, identical to that of the experimentally inoculated St. Maries or South Idaho strain, was identified in the bloodmeal taken by Dermacentor andersoni ticks, in the midgut and salivary glands of the infected ticks, and in the blood of acutely infected cattle following tick transmission. The results show that mammalian reservoirs harbor genetically heterogeneous A. marginale and suggest that different genotypes are maintained by transmission within the reservoir population.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3