Turnover mechanisms of the stable yeast PGK1 mRNA

Author:

Muhlrad D1,Decker C J1,Parker R1

Affiliation:

1. Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, University of Arizona, Tucson 85721.

Abstract

The first step in the decay of several yeast mRNAs is the shortening of the poly(A) tail, which for the MFA2 transcript triggers decapping and 5'-to-3' degradation. To understand the basis for differences in mRNA decay rates, it is important to determine if deadenylation-dependent decapping is specific to the unstable MFA2 transcript or is a general mechanism of mRNA degradation. To this end, we analyzed the turnover of the stable PGK1 mRNA by monitoring the decay of a pulse of newly synthesized transcripts while using two strategies to trap decay intermediates. First, we used strains deleted for the XRN1 gene, which encodes a major 5'-to-3' exonuclease in Saccharomyces cerevisiae. In xrn1 delta cells, PGK1 transcripts lacking the 5' cap structure and a few nucleotides at the 5' end were detected after deadenylation. Second, we inserted into the PGK1 5' untranslated region strong RNA secondary structures, which can slow exonucleolytic digestion and thereby trap decay intermediates. These secondary structures led to the accumulation of PGK1 mRNA fragments, following deadenylation, trimmed from the 5' end to the site of the secondary structure. The insertion of strong secondary structures into the 5' untranslated region also inhibited translation of the mRNA and greatly stimulated the decay of the PGK1 transcripts, suggesting that translation of the PGK1 mRNA is required for its normally slow rate of decay. These results suggest that one mechanism of degradation of the PGK1 transcript is deadenylation followed by decapping and subsequent 5'-to-3' exonucleolytic degradation. In addition, by blocking the 5'-to-3' degradation process, we observed PGK1 mRNA fragments that are consistent with a 3'-to-5' pathway of mRNA turnover that is slightly slower than the decapping/5'-to-3' decay pathway. These observations indicate that there are multiple mechanisms by which an individual transcript can be degraded following deadenylation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3