Carnitine-Dependent Transport of Acetyl Coenzyme A in Candida albicans Is Essential for Growth on Nonfermentable Carbon Sources and Contributes to Biofilm Formation

Author:

Strijbis Karin1,van Roermund Carlo W. T.2,Visser Wouter F.2,Mol Els C.1,van den Burg Janny1,MacCallum Donna M.3,Odds Frank C.3,Paramonova Ekaterina4,Krom Bastiaan P.4,Distel Ben1

Affiliation:

1. Departments of Medical Biochemistry

2. Genetic Metabolic Diseases, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands

3. Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, Aberdeen AB25 2ZD, United Kingdom

4. Department of Biomedical Engineering, University Medical Center Groningen and University of Groningen, P.O. Box 196, 9700 AD Groningen, The Netherlands

Abstract

ABSTRACT In eukaryotes, acetyl coenzyme A (acetyl-CoA) produced during peroxisomal fatty acid β-oxidation needs to be transported to mitochondria for further metabolism. Two parallel pathways for acetyl-CoA transport have been identified in Saccharomyces cerevisiae ; one is dependent on peroxisomal citrate synthase (Cit), while the other requires peroxisomal and mitochondrial carnitine acetyltransferase (Cat) activities. Here we show that the human fungal pathogen Candida albicans lacks peroxisomal Cit, relying exclusively on Cat activity for transport of acetyl units. Deletion of the CAT2 gene encoding the major Cat enzyme in C. albicans resulted in a strain that had lost both peroxisomal and mitochondrion-associated Cat activities, could not grow on fatty acids or C 2 carbon sources (acetate or ethanol), accumulated intracellular acetyl-CoA, and showed greatly reduced fatty acid β-oxidation activity. The cat2 null mutant was, however, not attenuated in virulence in a mouse model of systemic candidiasis. These observations support our previous results showing that peroxisomal fatty acid β-oxidation activity is not essential for C. albicans virulence. Biofilm formation by the cat2 mutant on glucose was slightly reduced compared to that by the wild type, although both strains grew at the same rate on this carbon source. Our data show that C. albicans has diverged considerably from S. cerevisiae with respect to the mechanism of intracellular acetyl-CoA transport and imply that carnitine dependence may be an important trait of this human fungal pathogen.

Publisher

American Society for Microbiology

Subject

Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3