Streptococcus mutans dextransucrase: mode of interaction with high-molecular-weight dextran and role in cellular aggregation

Author:

Germaine G R,Schachtele C F

Abstract

The interaction between Streptococcus mutans dextransucrase (EC 2.4.1.5) and high-molecular-weight dextran was studied in both the presence and absence of substrate sucrose. Equivalent weight-percent solutions of primer dextrans that differed 200-fold in molecular weight were found to be equally efficient in priming new dextran synthesis. Sodium borohydride reduction of dextran had no effect on its priming ability. These results suggest that dextran synthesis proceeds by addition of glucosyl residues to nonreducing termini of primer dextrans and that several enzyme molecules simultaneously bind to single high-molecular-weight dextran molecules. Kinetic data suggested that dextransucrase contains only one dextran binding site per enzyme molecule. The nature of the commonly observed highly aggregated state of dextransucrase was also studied. Two types of enzyme aggregates were distinguished: (i) oligomeric enzyme aggregates that formed in the absence of dextran and were dissociated by 1 M KCl; and (ii) dextran-induced enzyme aggregates that were stable to 3 M salt. Oligomeric enzyme aggregates were obtained from supernatants of fructose-grown cultures, whereas dextran-induced enzyme aggregates appeared to be present in glucose-grown cultures. The molecular weight of the smallest species of dextran-free detransucrase observed in solutions of 1 M KCl was estimated to be 40,000 by gel column chromatography. Addition of dextran to primer-dependent dextransucrase resulted in formation of complexes that were stable in CsCl density gradients and exhibited a buoyant density of 1.382 g/cm3 as compared with a buoyant density of 1.302 g/cm3 exhibited by dextransucrase. The enzyme-dextran complexes observed in CsCl density gradients contained about 25% dextran. This corresponded to 150 enzyme molecules (molecular weight, 40,000) per dextran molecule (molecular weight, 2 X 10(6)). The implication of these results to the mechanism of sucrose- and dextran-induced aggregation of S. mutans is discussed.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference47 articles.

1. Water insoluble and soluble glucans produced by extracellular glycosyltransferases from Streptococcus mutans;Baird J. K.;Microbios,1973

2. Immunodiffusion studies on the serological specificity of streptococci resembling Streptococcus mutans;Bratthall D.;Odontol. Revy,1969

3. Structural and enzymatic studies on glucans synthesized with glycosyltransferases of some strains of oral streptococci;Ceska M.;Acta Chem. Scand.,1972

4. Purification and properties of dextransucrase from Streptococcus mutans;Chludzinski A. M.;J. Bacteriol.,1974

5. Decreased cariogenicity of a mutant of Streptococcus mutans;deStoppelaar J. D.;Arch. Oral Biol.,1971

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3