Global Transcriptional Responses of Pseudomonas aeruginosa to Phage PRR1 Infection

Author:

Ravantti Janne J.1,Ruokoranta Tanja M.1,Alapuranen A. Marika1,Bamford Dennis H.1

Affiliation:

1. Department of Biological and Environmental Sciences and Institute of Biotechnology, Viikki Biocenter, P.O. Box 56, 00014 University of Helsinki, Finland

Abstract

ABSTRACT The infectious cycles of viruses are known to cause dramatic changes to host cell function. The development of microarray technology has provided means to monitor host cell responses to viral infection at the level of global changes in mRNA levels. We have applied this methodology to investigate gene expression changes caused by a small, icosahedral, single-stranded-RNA phage, PRR1 (a member of the Leviviridae family), on its host, Pseudomonas aeruginosa , at different times during its growth cycle. Viral infection in this system resulted in changes in expression levels of <4% of P. aeruginosa genes. Interestingly, the number of genes affected by viral infection was significantly lower than the number of genes affected by changes in growth conditions during the experiment. Compared with a similar study that focused on the complex, double-stranded-DNA bacterial virus PRD1, it was evident that there were no universal responses to viral infection. However, in both cases, translation was affected in infected cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3