Temporal Activation of the Sea Urchin Late H1 Gene Requires Stage-Specific Phosphorylation of the Embryonic Transcription Factor SSAP

Author:

Li Zhe1,Childs Geoffrey1

Affiliation:

1. Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461

Abstract

ABSTRACT Stage-specific activator protein (SSAP) is a 41-kDa polypeptide that binds to embryonic enhancer elements of the sea urchin late H1 gene. These enhancer elements mediate the transcriptional activation of the late H1 gene in a temporally specific manner at the mid-blastula stage of embryogenesis. Although SSAP can transactivate the late H1 gene only at late stages of the development, it resides in the sea urchin nucleus and maintains DNA binding activity throughout early embryogenesis. In addition, it has been shown that SSAP undergoes a conversion from a 41-kDa monomer to a ∼80- to 100-kDa dimer when the late H1 gene is activated. We have demonstrated that SSAP is differentially phosphorylated during embryogenesis. Serine 87, a cyclic AMP-dependent protein kinase consensus site located in the N-terminal DNA binding domain, is constitutively phosphorylated. At the mid-blastula stage of embryogenesis, temporally correlated with SSAP dimer formation and late H1 gene activation, a threonine residue in the C-terminal transactivation domain is phosphorylated. This phosphorylation can be catalyzed by a break-ended double-stranded DNA-activated protein kinase activity from the sea urchin nucleus in vitro. Microinjection of synthetic SSAP mRNAs encoding either serine or threonine phosphorylation mutants results in the failure to transactivate reporter genes that contain the enhancer element, suggesting that both serine and threonine phosphorylation of SSAP are required for the activation of the late H1 gene. Furthermore, SSAP can undergo blastula-stage-specific homodimerization through its GQ-rich transactivation domain. The late-specific threonine phosphorylation in this domain is essential for the dimer assembly. These observations indicate that temporally regulated SSAP activation is promoted by threonine phosphorylation on its transactivation domain, which triggers the formation of a transcriptionally active SSAP homodimer.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3