Both trans-acting factors and chromatin structure are involved in the regulation of transcription from the early and late promoters in simian virus 40 chromosomes

Author:

Tack L C,Beard P

Abstract

We isolated simian virus 40 (SV40) chromosomes from lytically infected CV-1 cells at various times during the late phase and transcribed them in vitro with either whole-cell or nuclear extracts of HeLa cells. The late promoter was 3- to 10-fold more active than the early promoter. With bare SV40 DNA templates, the early promoter was up to 10-fold stronger than the late promoter. The relative strengths of the early and late promoters on SV40 chromosomes were essentially independent of template concentration or length of the replicative phase of the infection. When monoclonal antibodies or antisera against T antigen (T Ag) were added to SV40 chromosomes or when T Ag, both free and chromatin bound, was removed by immunoprecipitation with anti-T, the activity of the late promoter remained essentially unchanged. Washing with 0.4 M NaCl removed T Ag from more than 90% of the mature chromosomes associated with T Ag. Transcription from the late promoter still predominated in the salt-washed T Ag-depleted chromosomes, even though there was a marked increase in early promoter activity. The depression of the early promoter could be reversed by adding the T Ag-containing extract back to the depleted chromosomes. Extraction of SV40 chromosomes with 1.5 M NaCl resulted in a decrease in the activity of the late promoter and a further increase in the activity of the early promoter so that the relative amounts of early and late RNA synthesized were similar to those for bare SV40 DNA templates. Late RNA synthesis from bare SV40 DNA templates was stimulated by high-speed supernatants prepared from nuclear extracts of SV40-infected cells but not from those of uninfected cells. Pretreatment of the supernatants with anti-T did not alter the result. Our findings indicate that the activity of the early and late SV40 promoters is regulated by at least two different mechanisms at the chromosomal level. One is mediated by a subclass of T Ag bound to SV40 chromosomes which represses early SV40 transcription but has no effect on late transcription. A second level of regulation, involving a tightly bound trans-acting chromosomal factor and a stable nucleoprotein structure, favors the late promoter over the early promoter by up to 10-fold.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3