A deletion mutation in the SH2-N domain of Shp-2 severely suppresses hematopoietic cell development

Author:

Qu C K1,Shi Z Q1,Shen R1,Tsai F Y1,Orkin S H1,Feng G S1

Affiliation:

1. Department of Biochemistry and Molecular Biology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis 46202-5121, USA.

Abstract

Shp-1 and Shp-2 are cytoplasmic protein tyrosine phosphatases that contain two Src homology 2 (SH2) domains. A negative regulatory role of Shp-1 in hematopoiesis has been strongly implicated by the phenotype of motheaten mice with a mutation in the Shp-1 locus, which is characterized by leukocyte hypersensitivity, deregulated mast cell function, and excessive erythropoiesis. A targeted deletion of 65 amino acids in the N-terminal SH2 (SH2-N) domain of Shp-2 leads to an embryonic lethality at midgestation in homozygous mutant mice. To further dissect the Shp-2 function in hematopoietic development, we have isolated homozygous Shp-2 mutant embryonic stem (ES) cells. Significantly reduced hematopoietic activity was observed when the mutant ES cells were allowed to differentiate into embryoid bodies (EBs), compared to the wild-type and heterozygous ES cells. Further analysis of ES cell differentiation in vitro showed that mutation in the Shp-2 locus severely suppressed the development of primitive and definitive erythroid progenitors and completely blocked the production of progenitor cells for granulocytes-macrophages and mast cells. Reverse transcriptase PCR analysis of the mutant EBs revealed reduced expression of several specific marker genes that are induced during blood cell differentiation. Stem cell factor induction of mitogen-activated protein kinase activity was also blocked in Shp-2 mutant cells. Taken together, these results indicate that Shp-2 is an essential component and primarily plays a positive role in signaling pathways that mediate hematopoiesis in mammals. Furthermore, stimulation of its catalytic activity is not sufficient, while interaction via the SH2 domains with the targets or regulators is necessary for its biological functions in cells. The in vitro ES cell differentiation assay can be used as a biological tool in dissecting cytoplasmic signaling pathways.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3