Regulation of gene expression by cyclic GMP-dependent protein kinase requires nuclear translocation of the kinase: identification of a nuclear localization signal

Author:

Gudi T1,Lohmann S M1,Pilz R B1

Affiliation:

1. University of California, San Diego, La Jolla 92093-0652, USA.

Abstract

We recently demonstrated that cyclic GMP (cGMP)-dependent protein kinase (G-kinase) activates the human fos promoter in a strictly cGMP-dependent manner (T. Gudi et al., J. Biol. Chem. 271:4597-4600, 1996). Here, we demonstrate that G-kinase translocates to the nucleus by an active transport mechanism which requires a nuclear localization signal (NLS) and is regulated by cGMP. Immunofluorescent staining of G-kinase was predominantly cytoplasmic in untreated cells, but intense nuclear staining appeared in 8-bromo (Br)-cGMP-treated cells. We identified a putative NLS in the G-kinase ATP binding domain which resembles the NLS of the interleukin-1alpha precursor. Fusion of the G-kinase NLS to the N terminus of beta-galactosidase produced a chimeric protein which localized to the nucleus. Mutation of a single amino acid residue (K407-->E) within the G-kinase NLS produced an enzyme with normal cGMP-dependent activity in vitro which did not translocate to the nucleus and did not transactivate the fos promoter in the presence of 8-Br-cGMP in vivo. In contrast, N-terminally truncated versions of G-kinase with constitutive, cGMP-independent activity in vitro localized to the nucleus and transactivated the fos promoter in the absence of 8-Br-cGMP. These results indicate that nuclear localization of G-kinase is required for transcriptional activation of the fos promoter and suggest that a conformational change of the kinase, induced by cGMP binding or by removal of the N-terminal autoinhibitory domain, functionally activates an otherwise cryptic NLS.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3