Promoter selective transcriptional synergy mediated by sterol regulatory element binding protein and Sp1: a critical role for the Btd domain of Sp1

Author:

Athanikar J N1,Sanchez H B1,Osborne T F1

Affiliation:

1. Department of Molecular Biology and Biochemistry, University of California, Irvine, 92697-3900, USA.

Abstract

Cellular cholesterol and fatty acid levels are coordinately regulated by a family of transcriptional regulatory proteins designated sterol regulatory element binding proteins (SREBPs). SREBP-dependent transcriptional activation from all promoters examined thus far is dependent on the presence of an additional binding site for a ubiquitous coactivator. In the low-density lipoprotein (LDL) receptor, acetyl coenzyme A carboxylase (ACC), and fatty acid synthase (FAS) promoters, which are all regulated by SREBP, the coactivator is the transcription factor Sp1. In this report, we demonstrate that Sp3, another member of the Sp1 family, is capable of substituting for Sp1 in coactivating transcription from all three of these promoters. Results of an earlier study showed that efficient activation of transcription from the LDL receptor promoter required domain C of Sp1; however, this domain is not crucial for activation of the simian virus 40 promoter, where synergistic activation occurs through multiple Sp1 binding sites and does not require SREBP. Also in the present report, we further localize the critical determinant of the C domain required for activation of the LDL receptor to a small region that is highly conserved between Sp1 and Sp3. This crucial domain encompasses the buttonhead box, which is a 10-amino-acid stretch that is present in several Sp1 family members, including the Drosophila buttonhead gene product. Interestingly, neither the buttonhead box nor the entire C domain is required for the activation of the FAS and ACC promoters even though both SREBP and Sp1 are critical players. ACC and FAS each contain two critical SREBP sites, whereas there is only one in the LDL receptor promoter. This finding suggested that buttonhead-dependent activation by SREBP and Sp1 may be limited to promoters that naturally contain a single SREBP recognition site. Consistent with this model, a synthetic construct containing three tandem copies of the native LDL receptor SREBP site linked to a single Sp1 site was also significantly activated in a buttonhead-independent fashion. Taken together, these studies indicate that transcriptional activation through the concerted action of SREBP and Sp1 can occur by at least two different mechanisms, and promoters that are activated by each one can potentially be identified by the number of critical SREBP binding sites that they contain.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3