Evidence for a requirement for both phospholipid and phosphotyrosine binding via the Shc phosphotyrosine-binding domain in vivo

Author:

Ravichandran K S1,Zhou M M1,Pratt J C1,Harlan J E1,Walk S F1,Fesik S W1,Burakoff S J1

Affiliation:

1. Beirne Carter Center for Immunology Research and Department of Microbiology, University of Virginia, Charlottesville 22908, USA. kr4h@virginia.edu

Abstract

The adapter protein Shc is a critical component of mitogenic signaling pathways initiated by a number of receptors. Shc can directly bind to several tyrosine-phosphorylated receptors through its phosphotyrosine-binding (PTB) domain, and a role for the PTB domain in phosphotyrosine-mediated signaling has been well documented. The structure of the Shc PTB domain demonstrated a striking homology to the structures of pleckstrin homology domains, which suggested acidic phospholipids as a second ligand for the Shc PTB domain. Here we demonstrate that Shc binding via its PTB domain to acidic phospholipids is as critical as binding to phosphotyrosine for leading to Shc phosphorylation. Through structure-based, targeted mutagenesis of the Shc PTB domain, we first identified the residues within the PTB domain critical for phospholipid binding in vitro. In vivo, the PTB domain was essential for localization of Shc to the membrane, as mutant Shc proteins that failed to interact with phospholipids in vitro also failed to localize to the membrane. We also observed that PTB domain-dependent targeting to the membrane preceded the PTB domain's interaction with the tyrosine-phosphorylated receptor and that both events were essential for tyrosine phosphorylation of Shc following receptor activation. Thus, Shc, through its interaction with two different ligands, is able to accomplish both membrane localization and binding to the activated receptor via a single PTB domain.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3