Affiliation:
1. Department of Microbiology, University of Guelph, Ontario, Canada.
Abstract
Previous chemical analyses identified two structurally distinct O polysaccharides in the lipopolysaccharide of Klebsiella pneumoniae serotype O1:K20 (C. Whitfield, J. C. Richards, M. B. Perry, B. R. Clarke, and L. L. MacLean, J. Bacteriol. 173:1420-1431, 1991). The polysaccharides were designated D-galactan I and D-galactan II; both are homopolymers of galactose. To begin investigation of the synthesis and expression of these O polysaccharides, we have cloned a 7.3-kb region of the chromosome of K. pneumoniae O1:K20, containing the his-linked rfbkpO1 (O-antigen biosynthesis) gene cluster. In Escherichia coli K-12 and Salmonella typhimurium, rfbkpO1 directed the synthesis of D-galactan I but not D-galactan II. The cloned rfbkpO1 genes did not complement a mutation affecting D-galactan II synthesis in K. pneumoniae CWK37, suggesting that another (unlinked) locus is also required for D-galactan II expression. However, plasmids carrying rfbkpO1 did complement a mutation in K. pneumoniae CWK43 which eliminated expression of both D-galactan I and D-galactan II, indicating that at least one function is common to synthesis of both polymers. Synthesis of D-galactan I was dependent on chromosomal galE and rfe genes. Hybridization experiments indicated that the rfbkpO1 sequences from different serotype O1 Klebsiella isolates showed some restriction fragment length polymorphism.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology