Molecular characterization of the Entner-Doudoroff pathway in Escherichia coli: sequence analysis and localization of promoters for the edd-eda operon

Author:

Egan S E1,Fliege R1,Tong S1,Shibata A1,Wolf R E1,Conway T1

Affiliation:

1. School of Biological Sciences, University of Nebraska, Lincoln 68588-0118.

Abstract

The nucleotide sequence of the entire Escherichia coli edd-eda region that encodes the enzymes of the Entner-Doudoroff pathway was determined. The edd structural gene begins 236 bases downstream of zwf. The eda structural gene begins 34 bases downstream of edd. The edd reading frame is 1,809 bases long and encodes the 602-amino-acid, 64,446-Da protein 6-phosphogluconate dehydratase. The deduced primary amino acid sequences of the E. coli and Zymomonas mobilis dehydratase enzymes are highly conserved. The eda reading frame is 642 bases long and encodes the 213-amino-acid, 22,283-Da protein 2-keto-3-deoxy-6-phosphogluconate aldolase. This enzyme had been previously purified and sequenced by others on the basis of its related enzyme activity, 2-keto-4-hydroxyglutarate aldolase. The data presented here provide proof that the two enzymes are identical. The primary amino acid sequences of the E. coli, Z. mobilis, and Pseudomonas putida aldolase enzymes are highly conserved. When E. coli is grown on gluconate, the edd and eda genes are cotranscribed. Four putative promoters within the edd-eda region were identified by transcript mapping and computer analysis. P1, located upstream of edd, appears to be the primary gluconate-responsive promoter of the edd-eda operon, responsible for induction of the Entner-Doudoroff pathway, as mediated by the gntR product. High basal expression of eda is explained by constitutive transcription from P2, P3, and/or P4 but not P1.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3