Extracellular and cellular distribution of muramidase-2 and muramidase-1 of Enterococcus hirae ATCC 9790

Author:

Kariyama R1,Shockman G D1

Affiliation:

1. Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.

Abstract

A substantial portion of the second peptidoglycan hydrolase (muramidase-2) activity of Enterococcus hirae ATCC 9790 (formerly Streptococcus faecium) is present in the supernatant culture medium. In contrast, nearly all muramidase-1 activity is associated with cells in the latent, proteinase-activatable form. Muramidase-2 activity is produced and secreted throughout growth, with maximal levels attained at or near the end of exponential growth in a rich organic medium. Muramidase-2 activity in the culture medium remained high even during overnight incubations in the absence of proteinase inhibitors. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of supernatant culture medium concentrated by 60% saturated ammonium sulfate precipitation showed the presence of several Coomassie blue-staining bands. One intensely staining protein band, at about 71 kDa, selectively adsorbed to the insoluble peptidoglycan fraction of cell walls of E. hirae, retained muramidase-2 activity, and reacted in Western immunoblots with monoclonal antibodies to muramidase-2. The mobility of extracellular muramidase-2 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis was indistinguishable from that of muramidase-2 extracted with 6 M guanidine hydrochloride from intact bacteria. Muramidase-2 appears to have only a limited number of binding sites on the peptidoglycan of E. hirae cell walls but binds with high affinity. Although high levels of muramidase-2 activity were present in supernatants of stationary-phase cultures, the bacteria were resistant to autolysis. Thus it appears that the peptidoglycan in walls of intact cells of E. hirae is somehow protected from the hydrolytic action of extracellular muramidase-2.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3