Effects of site-directed mutations on processing and activities of penicillin G acylase from Escherichia coli ATCC 11105

Author:

Choi K S1,Kim J A1,Kang H S1

Affiliation:

1. Department of Microbiology, College of Natural Sciences, Seoul National University, Korea.

Abstract

Penicillin G acylase from Escherichia coli ATCC 11105 is synthesized from its precursor polypeptide into a catalytically active heterodimer via a complex posttranslational processing pathway. Substitutions in the pair of aminoacyl residues at the cleavage site for processing the small and large subunits were made. Their processing phenotypes and penicillin G acylase activities were analyzed. By the introduction of a prolyl residue at either position, the processing of the small subunit was blocked without a change in enzymatic activity. Four other substitutions had no effect. At the site for processing the large subunit, four substitutions out of the seven examined blocked processing. In general, penicillin G acylase activity seemed to be proportional to the efficiency of the large-subunit-processing step. Ser-290 is an amino acid critical for processing and also for the enzymatic activity of penicillin G acylase. In the mutant pAATC, in which Ser-290 is mutated to Cys, the precursor is processed, but there is no detectable enzymatic activity. This suggests that there is a difference in the structural requirements for the processing pathway and for enzymatic activity. Recombination analysis of several mutants demonstrated that the small subunit can be processed only when the large subunit is processed first. Some site-directed mutants from which signal peptides were removed showed partial processing phenotypes and reduced enzymatic activities. Their expression showed that the prerequisite for penicillin G acylase activity is the efficient processing of the large subunit and that the maturation of the small subunit does not affect the enzymatic activity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference30 articles.

1. Complete nucleotide sequence of the penicillin acylase gene from Kluyvera citrophila;Barbero J. L.;Gene,1986

2. Automated colorimetric determination of 6-aminopenicillanic acid in fermentation media;Bomstein J.;Anal. Chem.,1965

3. Supercoil sequencing: a fast and simple method for sequencing plasmid DNA;Chen E. Y.;DNA (New York),1985

4. Choi K. S. 1992. Post-translational processing of penicillin G acylase from Escherichia coli ATCC 11105. Ph.D. thesis. Seoul National University Seoul Korea.

5. Experimental evolution of penicillin G acylase from Escherichia coli and Proteus rettgeni;Daumy G. D.;J. Bacteriol.,1985

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3