Carboxylation of phenylphosphate by phenol carboxylase, an enzyme system of anaerobic phenol metabolism

Author:

Lack A1,Fuchs G1

Affiliation:

1. Angewandte Mikrobiologie, University of Ulm, Germany.

Abstract

Several lines of evidence indicate that the first step in the anaerobic metabolism of phenol is phenol carboxylation to 4-hydroxybenzoate; this reaction is considered a biological Kolbe-Schmitt carboxylation. A phenol carboxylase system was characterized by using a denitrifying Pseudomonas strain, K 172, which catalyzes an isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate. The enzymatic isotope exchange activity (100 nmol min-1 mg-1 of protein) requires Mn2+ and K+. We show that this system also catalyzes the carboxylation of phenylphosphate (the phosphoric acid monophenyl ester) to 4-hydroxybenzoate and phosphate. The specific activity of phenylphosphate carboxylation at the optimal pH of 6.5 is 12 nmol of CO2 fixed min-1 mg-1 of protein. Phenylphosphate cannot be replaced by Mg(2+)-ATP and phenol. The carboxylase activity requires Mn2+ but, in contrast to the isotope exchange activity, does not require K+. The apparent Km values are 1.5 mM dissolved CO2 and 0.2 mM phenylphosphate. Several convenient assays for phenylophosphate carboxylation are described. The isotope exchange reaction and the net carboxylation reaction are catalyzed by the same oxygen-sensitive enzyme, which has a half-life in an air-saturated solution of less than 1 min. Both activities cochromatographed with a protein with a Mr of 280,000, and both activities were induced only after anaerobic growth on phenol. The carboxylation of phenylphosphate suggests that phenylphosphate itself is the physiological CO2 acceptor molecular of this novel CO2 fixation reaction. Alternatively, phenylphosphate could simulate the unknown natural precursor. It is suggested that the formation of an enzyme-bound phenolate anion from the activated phenolic compound is the rate-determining step in the carboxylation reaction.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference36 articles.

1. Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov;Bak F.;Arch. Microbiol.,1986

2. Study of the methanogenic degradation of phenol via carboxylation to benzoate;Bisaillon J.;Can. J. Microbiol.,1991

3. Carboxylation of o-cresol by an anaerobic consortium under methanogenic conditions;Bisaillon J.;Appl. Environ. Microbiol.,1991

4. Carbon dioxide fixation as the initial step in the metabolism of acetone by Thiosphaera pantotropha;Bonnet-Smits E. M.;J. Gen. Microbiol.,1988

5. Differential expression of enzyme activities initiating anoxic metabolism of various aromatic compounds via benzoyl-CoA;Dangel W.;Arch. Microbiol.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3