Complement Opsonization Promotes Herpes Simplex Virus 2 Infection of Human Dendritic Cells

Author:

Crisci Elisa1ORCID,Ellegård Rada1,Nyström Sofia1,Rondahl Elin2,Serrander Lena3,Bergström Tomas4,Sjöwall Christopher5,Eriksson Kristina6,Larsson Marie1

Affiliation:

1. Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden

2. Division of Clinical Microbiology, Linköping University Hospital, Linköping, Sweden

3. Division of Infectious Diseases, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden

4. Department of Infectious Disease, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden

5. AIR Rheumatology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden

6. Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden

Abstract

ABSTRACT Herpes simplex virus 2 (HSV-2) is one of the most common sexually transmitted infections globally, with a very high prevalence in many countries. During HSV-2 infection, viral particles become coated with complement proteins and antibodies, both present in genital fluids, which could influence the activation of immune responses. In genital mucosa, the primary target cells for HSV-2 infection are epithelial cells, but resident immune cells, such as dendritic cells (DCs), are also infected. DCs are the activators of the ensuing immune responses directed against HSV-2, and the aim of this study was to examine the effects opsonization of HSV-2, either with complement alone or with complement and antibodies, had on the infection of immature DCs and their ability to mount inflammatory and antiviral responses. Complement opsonization of HSV-2 enhanced both the direct infection of immature DCs and their production of new infectious viral particles. The enhanced infection required activation of the complement cascade and functional complement receptor 3. Furthermore, HSV-2 infection of DCs required endocytosis of viral particles and their delivery into an acid endosomal compartment. The presence of complement in combination with HSV-1- or HSV-2-specific antibodies more or less abolished HSV-2 infection of DCs. Our results clearly demonstrate the importance of studying HSV-2 infection under conditions that ensue in vivo , i.e., conditions under which the virions are covered in complement fragments and complement fragments and antibodies, as these shape the infection and the subsequent immune response and need to be further elucidated. IMPORTANCE During HSV-2 infection, viral particles should become coated with complement proteins and antibodies, both present in genital fluids, which could influence the activation of the immune responses. The dendritic cells are activators of the immune responses directed against HSV-2, and the aim of this study was to examine the effects of complement alone or complement and antibodies on HSV-2 infection of dendritic cells and their ability to mount inflammatory and antiviral responses. Our results demonstrate that the presence of antibodies and complement in the genital environment can influence HSV-2 infection under in vitro conditions that reflect the in vivo situation. We believe that our findings are highly relevant for the understanding of HSV-2 pathogenesis.

Funder

The Swedish Research Council

The Swedish Physicians Against AIDS Research Foundation

The Swedish International Development Cooperation Agency

SIDA SARC

VINNMER for Vinnova

Linkoping University Hospital Research Fund

The Swedish Society of Medicine

The Swedish Society for Medical Research

George Cedric Metcalf Charitable Foundation

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3