Herpes Simplex Virus 1-Encoded Protein Kinase UL13 Phosphorylates Viral Us3 Protein Kinase and Regulates Nuclear Localization of Viral Envelopment Factors UL34 and UL31

Author:

Kato Akihisa12,Yamamoto Mayuko2,Ohno Takashi12,Tanaka Michiko3,Sata Tetsutaro3,Nishiyama Yukihiro2,Kawaguchi Yasushi124

Affiliation:

1. Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639

2. Department of Virology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550

3. Department of Pathology, National Institute of Infectious Disease, Shinjuku-ku, Tokyo 162-8640, Japan

4. PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012

Abstract

ABSTRACT UL13 and Us3 are protein kinases encoded by herpes simplex virus 1. We report here that Us3 is a physiological substrate for UL13 in infected cells, based on the following observations. (i) The electrophoretic mobility, in denaturing gels, of Us3 isoforms from Vero cells infected with wild-type virus was slower than that of isoforms from cells infected with a UL13 deletion mutant virus (ΔUL13). After treatment with phosphatase, the electrophoretic mobility of the Us3 isoforms from cells infected with wild-type virus changed, with one isoform migrating as fast as one of the Us3 isoforms from ΔUL13-infected cells. (ii) A recombinant protein containing a domain of Us3 was phosphorylated by UL13 in vitro. (iii) The phenotype of ΔUL13 resembles that of a recombinant virus lacking the Us3 gene (ΔUs3) with respect to localization of the viral envelopment factors UL34 and UL31, whose localization has been shown to be regulated by Us3. UL34 and UL31 are localized in a smooth pattern throughout the nuclei of cells infected with wild-type virus, whereas their localization in ΔUL13- and ΔUs3-infected cells appeared as nuclear punctate patterns. These results indicate that UL13 phosphorylates Us3 in infected cells and regulates UL34 and UL31 localization, either by phosphorylating Us3 or by a Us3-independent mechanism.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3