Host Cell Growth in the Presence of the Thermosensitive Drug Resistance Factor, Rts1

Author:

DiJoseph C. G.1,Bayer M. E.1,Kaji A.1

Affiliation:

1. Microbiology Department, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19174

Abstract

We have confirmed and extended the observation of Terawaki et al. that the R factor, Rts1, alters the growth of its host at 42 C. In all media tested there was a period during which total cell numbers increased linearly, while viable counts remained constant. During this period the rate of precursor incorporation per cell particle into deoxyribonucleic acid, ribonucleic acid, and protein declined steadily. These patterns were a consequence of the accumulation of increasing numbers of cells which had lost colony-forming ability. A temperature shiftdown experiment showed that the colony formers could, after a lag, go on to divide normally, whereas most of the noncolony formers could not undergo even a limited number of divisions after shiftdown. The number of normal divisions which occurred after shiftup of Rts1 cells to 42 C was medium dependent. In rich medium there were, on the average, two or three doublings; in glucose medium, one; and in glycerol medium, only a fraction of a doubling. Even in glucose medium, however, no increase in viable counts was observed during growth at 42 C if the cells were first starved for glucose for 1 h at 42 C. A temperature shiftdown from 42 C to 27 C during glucose starvation reversed the effect of starvation at 42 C alone. These results are consistent with the hypothesis that the thermosensitive Rts1 component(s) responsible for the host effects is present at permissive temperature, but can undergo a reversible temperature-induced alteration which then interferes with some essential host function. The detrimental effects of this R factor on its host were also reflected in a heightened sensitivity to kanamycin and actinomycin D at 42 C. Electron microscope observations revealed changes in the appearance of the cell membrane. Membranous invaginations were noted at discrete sites in the cell.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference19 articles.

1. Adams M. H. 1959. Bacteriophages. J. Wiley and Sons Inc. N.Y.

2. Areas of adhesion between wall and membrane of Escherichia coli;Bayer M. E.;J. Gen. Microbiol.,1968

3. Involvement of recombination genes in growth and viability of Escherzchia coli K-12;Capaldo-Kimball F.;J. Bacteriol.,1971

4. R factors from Proteus rettgeri;Coetzee J. N.;J. Gen. Microbiol.,1972

5. An improved diphenylamine method for the estimation of deoxyribonucleic acid;Giles K. W.;Nature (London),1965

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3