Regulation of the dnaK operon of Streptomyces coelicolor A3(2) is governed by HspR, an autoregulatory repressor protein

Author:

Bucca G1,Hindle Z1,Smith C P1

Affiliation:

1. Department of Biochemistry and Applied Molecular Biology, U.M.I.S.T., Manchester, United Kingdom.

Abstract

The dnaK operon of Streptomyces coelicolor contains four genes (5'-dnaK-grpE-dnaJ-hspR). The fourth gene encodes a novel heat shock protein, HspR, which appears so far to be unique to the high-G+C actinomycete group of bacteria. HspR binds with high specificity to three inverted repeat sequences in the promoter region of the S. coelicolor dnaK operon, strongly suggesting a direct role for HspR in heat shock gene regulation. Here we present genetic and biochemical evidence that HspR is the repressor of the dnaK operon. Disruption of hspR leads to high-level constitutive transcription of the dnaK operon. Parallel transcriptional analyses of groESL1 and groEL2 expression demonstrated that heat shock regulation of the groE genes was essentially unaffected in an hspR null mutant, although the basal (uninduced) level of groEL2 transcription was slightly elevated compared with the wild type. The results of HspR titration experiments, where the dnaK operon promoter region was cloned at ca. 50 copies per chromosome, were consistent with the prediction that HspR functions as a negative autoregulator. His-tagged HspR, overproduced and purified from Escherichia coli, was shown to repress transcription from the dnaK operon promoter in vitro, providing additional evidence for the proposal that HspR directly regulates transcription of the dnaK operon. These studies indicate that there are at least two transcriptional mechanisms for controlling heat shock genes in S. coelicolor--one controlling the dnaK operon and another controlling the groE genes.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3