Affiliation:
1. Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Japan.
Abstract
Nucleotide sequence analysis of the flanking regions of the carBC genes of Pseudomonas sp. strain CA10 revealed that there were two open reading frames (ORFs) ORF4 and ORF5, in the upstream region of carBC. Similarly, three ORFs, ORF6 to ORF8, were found in the downstream region of carBC. The deduced amino acid sequences of ORF6 and ORF8 showed homologies with ferredoxin and ferredoxin reductase components of bacterial multicomponent dioxygenase systems, respectively. ORF4 and ORF5 had the same sequence and were tandemly linked. Their deduced amino acid sequences showed about 30% homology with large (alpha) subunits of other terminal oxygenase components. Functional analysis using resting cells harboring the deleted plasmids revealed that the products of ORF4 and -5, ORF6, and ORF8 were terminal dioxygenase, ferredoxin, and ferredoxin reductase, respectively, of carbazole 1,9a-dioxygenase (CARDO), which attacks the angular position adjacent to the nitrogen atom of carbazole, and that the product of ORF7 is not indispensable for CARDO activity. Based on the results, ORF4, ORF5, ORF6, and ORF8 were designated carAa, carAa, carAc, and carAd, respectively. The products of carAa, carAd, and ORF7 were shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be polypeptides with molecular masses of 43, 36, and 11 kDa, respectively. However, the product of carAc was not detected in Escherichia coli. CARDO has the ability to oxidize a wide variety of polyaromatic compounds, including dibenzo-p-dioxin, dibenzofuran, biphenyl, and polycyclic aromatic hydrocarbons such as naphthalene and phenanthrene. Since 2,2',3-trihydroxydiphenyl ether and 2,2',3-trihydroxybiphenyl were identified as metabolites of dibenzo-p-dioxin and dibenzofuran, respectively, it was considered that CARDO attacked at the angular position adjacent to the oxygen atom of dibenzo-p-dioxin and dibenzofuran as in the case with carbazole.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology