Induction of Nitric Oxide Synthase in Anopheles stephensi by Plasmodium falciparum : Mechanism of Signaling and the Role of Parasite Glycosylphosphatidylinositols

Author:

Lim Junghwa1,Gowda D. Channe2,Krishnegowda Gowdahalli2,Luckhart Shirley1

Affiliation:

1. Department of Biochemistry, Virginia Tech, Blacksburg, Virginia

2. Department of Biochemistry and Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania

Abstract

ABSTRACT Malaria parasite ( Plasmodium spp.) infection in the mosquito Anopheles stephensi induces significant expression of A. stephensi nitric oxide synthase (AsNOS) in the midgut epithelium as early as 6 h postinfection and intermittently thereafter. This induction results in the synthesis of inflammatory levels of nitric oxide (NO) in the blood-filled midgut that adversely impact parasite development. In mammals, P. falciparum glycosylphosphatidylinositols (PfGPIs) can induce NOS expression in immune and endothelial cells and are sufficient to reproduce the major effects of parasite infection. These effects are mediated in part by mimicry of insulin signaling by PfGPIs. In this study, we demonstrate that PfGPIs can induce AsNOS expression in A. stephensi cells in vitro and in the midgut epithelium in vivo. Signaling by P. falciparum merozoites and PfGPIs is mediated through A. stephensi Akt/protein kinase B and a pathway involving DSOR1, a mitogen-activated protein kinase kinase, and an extracellular signal-regulated kinase. However, despite the involvement of kinases that are also associated with insulin signaling in A. stephensi cells, signaling by P. falciparum and by PfGPIs is distinctively different from signaling by insulin. Therefore, although mimicry of insulin by PfGPIs appears to be restricted to mammalian hosts of P. falciparum , the conservation of PfGPIs as a prominent parasite-derived signal of innate immunity can now be extended to include Anopheles mosquitoes, indicating that parasite signaling of innate immunity is conserved in mosquito and mammalian cells.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3