A role for CDC7 in repression of transcription at the silent mating-type locus HMR in Saccharomyces cerevisiae

Author:

Axelrod A1,Rine J1

Affiliation:

1. Department of Molecular and Cellular Biology, University of California, Berkeley 94720.

Abstract

The mating-type genes at MAT in Saccharomyces cerevisiae are expressed, whereas the same genes located at HML and HMR are transcriptionally repressed. The DNA element responsible for repression at HMR has been termed a silencer and contains an autonomous replication sequence, a binding site for GRFI/RAPI, and a binding site for ABFI. A double-mutant HMR-E silencer that contains single nucleotide substitutions in both the GRFI/RAPI- and ABFI-binding sites no longer binds either factor in vitro, nor represses transcription at HMR in vivo. In MAT alpha cells, this derepression of a information results in a nonmating phenotype. Second-site suppressor mutations were isolated that restored the alpha mating phenotype to MAT alpha cells containing the double-mutant silencer. One of these suppressors, designated sas1-1, conferred a temperature-sensitive lethal phenotype to the cell. SAS1 was found to be identical to CDC7, a gene which encodes a protein kinase required for the initiation of DNA replication. This new allele of CDC7 was designated cdc7-90. cdc7-90 restored the alpha mating phenotype by restoring silencing. The original allele of CDC7, isolated on the basis of the cell cycle phenotype it confers, also restored silencing, and overexpression of CDC7 interfered with silencing. cdc7-90 did not restore detectable binding of GRFI/RAPI or ABFI to the double-mutant silencer in vitro. These results indicate that a reduced level of CDC7 function restores silencing to a locus defective in binding two factors normally required for silencing.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference58 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Eukaryotic MCM Proteins: Beyond Replication Initiation;Microbiology and Molecular Biology Reviews;2004-03

2. Mutations in DNA Replication Genes Reduce Yeast Life Span;Molecular and Cellular Biology;2002-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3