The Cytochrome c Maturation Locus of Legionella pneumophila Promotes Iron Assimilation and Intracellular Infection and Contains a Strain-Specific Insertion Sequence Element

Author:

Viswanathan V. K.1,Kurtz Sherry1,Pedersen Lisa L.2,Abu Kwaik Yousef2,Krcmarik Kevin1,Mody Sejal1,Cianciotto Nicholas P.1

Affiliation:

1. Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois 60611

2. Department of Microbiology-Immunology, University of Kentucky Chandler Medical Center, Lexington, Kentucky 40536

Abstract

ABSTRACT Previously, we obtained a Legionella pneumophila mutant, NU208, that is hypersensitive to iron chelators when grown on standard Legionella media. Here, we demonstrate that NU208 is also impaired for growth in media that simply lack their iron supplement. The mutant was not, however, impaired for the production of legiobactin, the only known L. pneumophila siderophore. Importantly, NU208 was also highly defective for intracellular growth in human U937 cell macrophages and Hartmannella and Acanthamoeba amoebae. The growth defect within macrophages was exacerbated by treatment of the host cells with an iron chelator. Sequence analysis demonstrated that the transposon disruption in NU208 lies within an open reading frame that is highly similar to the cytochrome c maturation gene, ccmC . CcmC is generally recognized for its role in the heme export step of cytochrome biogenesis. Indeed, NU208 lacked cytochrome c . Phenotypic analysis of two additional, independently derived ccmC mutants confirmed that the growth defect in low-iron medium and impaired infectivity were associated with the transposon insertion and not an entirely spontaneous second-site mutation. trans -complementation analysis of NU208 confirmed that L. pneumophila ccmC is required for cytochrome c production, growth under low-iron growth conditions, and at least some forms of intracellular infection. Although ccm genes have recently been implicated in iron assimilation, our data indicate, for the first time, that a ccm gene can be required for bacterial growth in an intracellular niche. Complete sequence analysis of the ccm locus from strain 130b identified the genes ccmA-H . Interestingly, however, we also observed that a 1.8-kb insertion sequence element was positioned between ccmB and ccmC . Southern hybridizations indicated that the open reading frame within this element (ISLp 1 ) was present in multiple copies in some strains of L. pneumophila but was absent from others. These findings represent the first evidence for a transposable element in Legionella and the first identification of an L. pneumophila strain-specific gene.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3