Transfer of the Core Region Genes of the Yersinia enterocolitica WA-C Serotype O:8 High-Pathogenicity Island to Y. enterocolitica MRS40, a Strain with Low Levels of Pathogenicity, Confers a Yersiniabactin Biosynthesis Phenotype and Enhanced Mouse Virulence

Author:

Pelludat Cosima1,Hogardt Michael1,Heesemann Jürgen1

Affiliation:

1. Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, 80336 Munich, Germany

Abstract

ABSTRACT The high-pathogenicity island (HPI) of yersiniae encodes an iron uptake system represented by its siderophore yersiniabactin (Ybt). The HPI is present in yersiniae with high levels of pathogenicity—i.e., Yersinia pestis , Y. pseudotuberculosis , and Y. enterocolitica biogroup (BG) 1B—but absent in Y. enterocolitica strains with low (BG 2 to 5) and no (BG 1A) levels of pathogenicity and has been shown to be an important virulence factor. Comparison of the HPI in Y. enterocolitica (Yen-HPI) and that in Y. pestis and Y. pseudotuberculosis revealed that, in contrast to genes of the variable region, genes of the core region (genes irp9 to fyuA ) are highly homologous. In the present work the Yen-HPI core genes were rescued from the chromosome of Y. enterocolitica WA-C (BG 1B, serotype O:8) using the FRT -FLP recombinase system. Transfer of the resulting plasmid pCP1 into the siderophore-deficient strain Y. enterocolitica NF-O (BG 1A) led to no halo on siderophore indicator chrome azurol S (CAS) agar. Transfer of pCP1 into the Y. enterocolitica strain MRS40 (serotype O:9, BG 2; phenotype, CAS negative) led to a CAS halo larger than that of parental strain WA-C, indicating high Ybt production. pCP1 was highly unstable in iron-deficient medium, and no enhanced mouse virulence conferred by MRS40 carrying pCP1 could be detected. To overcome the problem of instability, pCP1 was integrated into the chromosome of MRS40, leading to the formation of a CAS halo comparable to that seen with WA-C and correspondingly to increased mouse virulence. Thus, the core genes of Yen-HPI are sufficient to confer a positive CAS phenotype and mouse virulence to Y. enterocolitica MRS40, BG 2, but are insufficient to confer this phenotype to Y. enterocolitica NF-O, BG 1A.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3