Affiliation:
1. Department of Molecular Biology, Princeton University, New Jersey 08544, USA.
Abstract
We report a detailed characterization of cell division cycle (cdc) genes in the differentiating gram-negative bacterium Caulobacter crescentus. A large set of temperature-sensitive cdc mutations was isolated after treatment with the chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine. Analysis of independently isolated mutants at the nonpermissive temperature identified a variety of well-defined terminal phenotypes, including long filamentous cells blocked at various stages of the cell division cycle and two unusual classes of mutants with defects in both cell growth and division. The latter strains are uniformly arrested as either short bagel-shaped coils or large predivisional cells. The polar morphology of these cdc mutants supports the hypothesis that normal cell cycle progression is directly responsible for developmental regulation in C. crescentus. Genetic and physical mapping of the conditional cdc mutations and the previously characterized dna and div mutations identified at least 21 genes that are required for normal cell cycle progression. Although most of these genes are widely scattered, the genetically linked divA, divB, and divE genes were shown by genetic complementation and physical mapping to be organized in one gene cluster at 3200 units on the chromosome. DNA sequence analysis and marker rescue experiments demonstrated that divE is the C. crescentus ftsA homolog and that the ftsZ gene maps immediately adjacent to ftsA. On the basis of these results, we suggest that the C. crescentus divA-divB-divE(ftsA)-ftsZ gene cluster corresponds to the 2-min fts gene cluster of Escherichia coli.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献