Affiliation:
1. Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
Abstract
The 2'-N-acetyltransferase [AAC(2')-Ia] in Providencia stuartii has a dual function where it is involved in the acetylation of peptidoglycan and certain aminoglycosides. A search for negative regulators of the aac(2')-Ia gene has resulted in the identification of aarC. A missense allele (aarC1) resulted in an 8.9-fold increase in beta-galactosidase accumulation from an aac(2')-lacZ transcriptional fusion. Northern blot analysis demonstrated an increase in aac(2')-Ia mRNA accumulation that was specific to cells at high density. In addition, the aarC1 allele also resulted in a substantial increase in the expression of aarP, a transcriptional activator of the aac(2')-Ia gene. The wild-type aarC gene was isolated by complementation and encodes a predicted protein of 365 amino acids with a molecular mass of 39,815 Da. The predicted AarC protein exhibited 88% amino acid homology to the previously identified GcpE protein of Escherichia coli and 86% homology to a gene product from Haemophilus influenzae. The E. coli gcpE gene was able to functionally complement the aarC1 allele in P. stuartii. The aarC1 allele was identified as a T to G transversion that resulted in a valine to glycine substitution at position 136 in the AarC protein. The aarC gene appears to be essential for cell viability as construction of a disrupted copy (aarC::lacZ) was possible only in cells that carried an episomal copy of aarC or gcpE.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献