Maximizing Recovery and Detection of Cryptosporidium parvum Oocysts from Spiked Eastern Oyster ( Crassostrea virginica ) Tissue Samples

Author:

Downey Autumn S.1,Graczyk Thaddeus K.123

Affiliation:

1. Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205

2. Department of Environmental Health Sciences, Division of Environmental Health Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205

3. Johns Hopkins Center for Water and Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205

Abstract

ABSTRACT Numerous studies have documented the presence of Cryptosporidium parvum , an anthropozoonotic enteric parasite, in molluscan shellfish harvested for commercial purposes. Getting accurate estimates of Cryptosporidium contamination levels in molluscan shellfish is difficult because recovery efficiencies are dependent on the isolation method used. Such estimates are important for determining the human health risks posed by consumption of contaminated shellfish. In the present study, oocyst recovery was compared for multiple methods used to isolate Cryptosporidium parvum oocysts from oysters ( Crassostrea virginica ) after exposure to contaminated water for 24 h. The immunomagnetic separation (IMS) and immunofluorescent antibody procedures from Environmental Protection Agency method 1623 were adapted for these purposes. Recovery efficiencies for the different methods were also determined using oyster tissue homogenate and hemolymph spiked with oocysts. There were significant differences in recovery efficiency among the different treatment groups ( P < 0.05). We observed the highest recovery efficiency (i.e., 51%) from spiked samples when hemolymph was kept separate during the homogenization of the whole oyster meat but was then added to the pellet following diethyl ether extraction of the homogenate, prior to IMS. Using this processing method, as few as 10 oocysts could be detected in a spiked homogenate sample by nested PCR. In the absence of water quality indicators that correlate with Cryptosporidium contamination levels, assessment of shellfish safety may rely on accurate quantification of oocyst loads, necessitating the use of processing methods that maximize oocyst recovery. The results from this study have important implications for regulatory agencies charged with determining the safety of molluscan shellfish for human consumption.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3