Affiliation:
1. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
Abstract
ABSTRACT
Long-term survivors of human immunodeficiency virus (HIV) infection have been shown to have a greatly increased incidence of B cell lymphomas. This increased lymphomagenesis suggests some link between HIV infection and the destabilization of the host B cell genome, a phenomenon also suggested by the extraordinary high frequency of mutation, insertion, and deletion in the broadly neutralizing HIV antibodies. Since HIV does not infect B cells, the molecular mechanisms of this genomic instability remain to be fully defined. Here, we demonstrate that the cell membrane-permeable HIV Tat proteins enhance activation-induced deaminase (AID)-mediated somatic hypermutation (SHM) of antibody V regions through their modulation of the endogenous polymerase II (Pol II) transcriptional process. Extremely small amounts of Tat that could come from bystander HIV-infected cells were sufficient to promote SHM. Our data suggest HIV Tat is one missing link between HIV infection and the overall B cell genomic instability in AIDS patients.
IMPORTANCE
Although the introduction of antiretroviral therapy (ART) has successfully controlled primary effects of human immunodeficiency virus (HIV) infection, such as HIV proliferation and HIV-induced immune deficiency, it did not eliminate the increased susceptibility of HIV-infected patients to B cell lymphomas. We find that a secreted HIV protein, Tat, enhances the intrinsic antibody diversification mechanism by increasing the AID-induced somatic mutations at the heavy-chain variable (VH) regions in human B cells. This could contribute to the high rate of mutation in the variable regions of broadly neutralizing anti-HIV antibodies and the genomewide mutations leading to B cell malignancies in HIV carriers.
Funder
HHS | NIH | National Cancer Institute
HHS | National Institutes of Health
Publisher
American Society for Microbiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献