Purine and carbohydrate availability drive Enterococcus faecalis fitness during wound and urinary tract infections

Author:

Tan Casandra Ai Zhu1ORCID,Chong Kelvin Kian Long1,Yeong Daryl Yu Xuan2,Ng Celine Hui Min2,Ismail Muhammad Hafiz1,Yap Zhei Hwee1,Khetrapal Varnica3,Tay Vanessa Shi Yun4,Drautz-Moses Daniela I.1,Ali Yusuf45,Chen Swaine L.36,Kline Kimberly A.127ORCID

Affiliation:

1. Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University Singapore, Singapore, Singapore

2. School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore

3. Infectious Diseases Translational Research Programme, Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore

4. Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore

5. Singapore Eye Research Institute (SERI), Singapore General Hospital, Singapore, Singapore

6. Laboratory of Bacterial Genomics, Genome Institute of Singapore, Singapore, Singapore

7. Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland

Abstract

ABSTRACT Enterococcus faecalis is commonly isolated from a variety of wound types. Despite its prevalence, the pathogenic mechanisms of E. faecalis during wound infection are poorly understood. Using a mouse wound infection model, we performed in vivo E. faecalis transposon sequencing and RNA sequencing to identify fitness determinants that are crucial for replication and persistence of E. faecalis during wound infection. We found that E. faecalis purine biosynthesis genes are important for bacterial replication during the early stages of wound infection, a time when purine metabolites are consumed by E. faecalis within wounds. We also found that the E. faecalis MptABCD phosphotransferase system (PTS), involved in the import of galactose and mannose, is crucial for E. faecalis persistence within wounds of both healthy and diabetic mice, especially when carbohydrate availability changes throughout the course of infection. During in vitro growth with mannose as the sole carbohydrate source, shikimate and purine biosynthesis genes were downregulated in the OG1RF ∆ mptD mutant compared to the isogenic wild-type strain, suggesting a link between mannose transport, shikimate, and purine biosynthesis. Together, our results suggest that dynamic and temporal microenvironment changes at the wound site necessitate concomitant responses by E. faecalis for successful pathogenesis. Moreover, both de novo purine biosynthesis and the MptABCD PTS system also contribute to E. faecalis fitness during catheter-associated urinary tract infection, suggesting that these pathways may be central and niche-independent virulence factors of E. faecalis and raising the possibility of lowering exogenous purine availability and/or targeting galactose/mannose PTS to control wound infections. IMPORTANCE Although E. faecalis is a common wound pathogen, its pathogenic mechanisms during wound infection are unexplored. Here, combining a mouse wound infection model with in vivo transposon and RNA sequencing approaches, we identified the E. faecalis purine biosynthetic pathway and galactose/mannose MptABCD phosphotransferase system as essential for E. faecalis acute replication and persistence during wound infection, respectively. The essentiality of purine biosynthesis and the MptABCD PTS is driven by the consumption of purine metabolites by E. faecalis during acute replication and changing carbohydrate availability during the course of wound infection. Overall, our findings reveal the importance of the wound microenvironment in E. faecalis wound pathogenesis and how these metabolic pathways can be targeted to better control wound infections.

Funder

National Research Foundation Singapore

Ministry of Education - Singapore

MOH | National Medical Research Council

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3