MacP bypass variants of Streptococcus pneumoniae PBP2a suggest a conserved mechanism for the activation of bifunctional cell wall synthases

Author:

Midonet Caroline1,Bisset Sean2,Shlosman Irina3,Cava Felipe45ORCID,Rudner David Z.1ORCID,Bernhardt Thomas G.16ORCID

Affiliation:

1. Department of Microbiology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts, USA

2. Department of Molecular Biology, Umeå University, Umeå, Sweden

3. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts, USA

4. Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Umea, Sweden

5. Department of Molecular Biology, Science for Life Laboratory (SciLifeLab), Umeå University, Umeå, Sweden

6. Howard Hughes Medical Institute, Chevy Chase, Maryland, USA

Abstract

ABSTRACT The peptidoglycan (PG) layer protects bacteria from osmotic lysis and defines their shape. The class A penicillin-binding proteins (aPBPs) are PG synthases that possess both glycan polymerization and crosslinking activities needed for PG biogenesis. In Gram-negative bacteria, aPBPs require activation by outer membrane lipoproteins, which are thought to stimulate their cognate synthase by inducing conformational changes that promote polymerase function. How aPBPs are controlled in Gram-positive bacteria is less clear. One of the few known regulators is MacP in Streptococcus pneumoniae ( Sp ). MacP is required for the activity of Sp PBP2a, but its mode of action has been obscure. We therefore selected for PBP2a variants capable of functioning in the absence of MacP. Amino acid substitutions that bypassed the MacP requirement for PBP2a function in vivo also activated its polymerase activity in vitro . Many of these changes mapped to the interface between the transmembrane (TM) helix and polymerase domain in a model PBP2a structure. This region is conformationally flexible in the experimentally determined structures of aPBPs and undergoes a structural transition upon binding the substrate-mimicking drug moenomycin. Our findings suggest that MacP promotes PG polymerization by altering the TM-polymerase domain interface in PBP2a and that this mechanism for aPBP activation may be broadly conserved. Furthermore, Sp cells expressing an activated PBP2a variant displayed heterogeneous shapes, highlighting the importance of proper aPBP regulation in cell morphogenesis. IMPORTANCE Class A penicillin-binding proteins (aPBPs) play critical roles in bacterial cell wall biogenesis. As the targets of penicillin, they are among the most important drug targets in history. Although the biochemical activities of these enzymes have been well studied, little is known about how they are regulated in cells to control when and where peptidoglycan is made. In this report, we isolate variants of the Streptococcus pneumoniae enzyme PBP2a that function in cells without MacP, a partner normally required for its activity. The amino acid substitutions activate the cell wall synthase activity of PBP2a, and their location in a model structure suggests an activation mechanism for this enzyme that is shared with aPBPs from distantly related organisms with distinct activators.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3