The response of chicken embryo dermal fibroblasts to cytochalasin B is altered by Rous sarcoma virus-induced cell transformation

Author:

Menko A S,Croop J,Toyama Y,Holtzer H,Boettiger D

Abstract

The drug cytochalasin B (CB), which disrupts the cellular microfilament network, allows the identification of as yet unclassified structural differences between normal and Rous sarcoma virus-transformed chicken embryo fibroblasts. When exposed to CB, normal chick fibroblasts attain an arborized or dendritic morphology. This results as the cytoplasm collapses upon the remaining structural and adhesive components of the cell. Rous sarcoma virus-transformed cells did not form or maintain these dendritic-like processes in the presence of CB and, as a result, rounded up but still remained attached to the substrate. With a temperature-sensitive mutant of Rous sarcoma virus, LA24A, it was possible to show that these effects are completely reversible and dependent on the expression of pp60src. The cytoskeleton in these CB-treated cells was examined by both immunofluorescence and electron microscopy. After exposure to CB, the microfilaments were found to be disrupted similarly throughout both the transformed and the nontransformed cells. In the nontransformed cells arborized by exposure to CB, the extended processes were found to contain intermediate filaments in an unusually high concentration and degree of organization. The distribution of these filaments in the central body of the arborized cells was random. This lower concentration and random distribution was similar to that seen throughout the transformed cells rounded up by exposure to CB. The failure of these transformed cells to arborize in CB indicates that the structural component(s) which is necessary for the formation or maintenance or both of the arborized state is altered by the expression of pp60src.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3